Copied to
clipboard

G = C53⋊C2order 250 = 2·53

3rd semidirect product of C53 and C2 acting faithfully

metabelian, supersoluble, monomial, A-group

Aliases: C533C2, C524D5, C5⋊(C5⋊D5), SmallGroup(250,14)

Series: Derived Chief Lower central Upper central

C1C53 — C53⋊C2
C1C5C52C53 — C53⋊C2
C53 — C53⋊C2
C1

Generators and relations for C53⋊C2
 G = < a,b,c,d | a5=b5=c5=d2=1, ab=ba, ac=ca, dad=a-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 1120 in 128 conjugacy classes, 65 normal (3 characteristic)
C1, C2, C5, D5, C52, C5⋊D5, C53, C53⋊C2
Quotients: C1, C2, D5, C5⋊D5, C53⋊C2

Smallest permutation representation of C53⋊C2
On 125 points
Generators in S125
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)
(1 108 89 14 64)(2 109 90 15 65)(3 110 86 11 61)(4 106 87 12 62)(5 107 88 13 63)(6 56 31 39 81)(7 57 32 40 82)(8 58 33 36 83)(9 59 34 37 84)(10 60 35 38 85)(16 66 41 115 91)(17 67 42 111 92)(18 68 43 112 93)(19 69 44 113 94)(20 70 45 114 95)(21 71 46 120 96)(22 72 47 116 97)(23 73 48 117 98)(24 74 49 118 99)(25 75 50 119 100)(26 76 51 125 101)(27 77 52 121 102)(28 78 53 122 103)(29 79 54 123 104)(30 80 55 124 105)
(1 124 49 34 44)(2 125 50 35 45)(3 121 46 31 41)(4 122 47 32 42)(5 123 48 33 43)(6 16 11 77 21)(7 17 12 78 22)(8 18 13 79 23)(9 19 14 80 24)(10 20 15 76 25)(26 100 85 95 90)(27 96 81 91 86)(28 97 82 92 87)(29 98 83 93 88)(30 99 84 94 89)(36 112 107 104 117)(37 113 108 105 118)(38 114 109 101 119)(39 115 110 102 120)(40 111 106 103 116)(51 75 60 70 65)(52 71 56 66 61)(53 72 57 67 62)(54 73 58 68 63)(55 74 59 69 64)
(2 5)(3 4)(6 97)(7 96)(8 100)(9 99)(10 98)(11 87)(12 86)(13 90)(14 89)(15 88)(16 28)(17 27)(18 26)(19 30)(20 29)(21 82)(22 81)(23 85)(24 84)(25 83)(31 47)(32 46)(33 50)(34 49)(35 48)(36 75)(37 74)(38 73)(39 72)(40 71)(41 122)(42 121)(43 125)(44 124)(45 123)(51 112)(52 111)(53 115)(54 114)(55 113)(56 116)(57 120)(58 119)(59 118)(60 117)(61 106)(62 110)(63 109)(64 108)(65 107)(66 103)(67 102)(68 101)(69 105)(70 104)(76 93)(77 92)(78 91)(79 95)(80 94)

G:=sub<Sym(125)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125), (1,108,89,14,64)(2,109,90,15,65)(3,110,86,11,61)(4,106,87,12,62)(5,107,88,13,63)(6,56,31,39,81)(7,57,32,40,82)(8,58,33,36,83)(9,59,34,37,84)(10,60,35,38,85)(16,66,41,115,91)(17,67,42,111,92)(18,68,43,112,93)(19,69,44,113,94)(20,70,45,114,95)(21,71,46,120,96)(22,72,47,116,97)(23,73,48,117,98)(24,74,49,118,99)(25,75,50,119,100)(26,76,51,125,101)(27,77,52,121,102)(28,78,53,122,103)(29,79,54,123,104)(30,80,55,124,105), (1,124,49,34,44)(2,125,50,35,45)(3,121,46,31,41)(4,122,47,32,42)(5,123,48,33,43)(6,16,11,77,21)(7,17,12,78,22)(8,18,13,79,23)(9,19,14,80,24)(10,20,15,76,25)(26,100,85,95,90)(27,96,81,91,86)(28,97,82,92,87)(29,98,83,93,88)(30,99,84,94,89)(36,112,107,104,117)(37,113,108,105,118)(38,114,109,101,119)(39,115,110,102,120)(40,111,106,103,116)(51,75,60,70,65)(52,71,56,66,61)(53,72,57,67,62)(54,73,58,68,63)(55,74,59,69,64), (2,5)(3,4)(6,97)(7,96)(8,100)(9,99)(10,98)(11,87)(12,86)(13,90)(14,89)(15,88)(16,28)(17,27)(18,26)(19,30)(20,29)(21,82)(22,81)(23,85)(24,84)(25,83)(31,47)(32,46)(33,50)(34,49)(35,48)(36,75)(37,74)(38,73)(39,72)(40,71)(41,122)(42,121)(43,125)(44,124)(45,123)(51,112)(52,111)(53,115)(54,114)(55,113)(56,116)(57,120)(58,119)(59,118)(60,117)(61,106)(62,110)(63,109)(64,108)(65,107)(66,103)(67,102)(68,101)(69,105)(70,104)(76,93)(77,92)(78,91)(79,95)(80,94)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125), (1,108,89,14,64)(2,109,90,15,65)(3,110,86,11,61)(4,106,87,12,62)(5,107,88,13,63)(6,56,31,39,81)(7,57,32,40,82)(8,58,33,36,83)(9,59,34,37,84)(10,60,35,38,85)(16,66,41,115,91)(17,67,42,111,92)(18,68,43,112,93)(19,69,44,113,94)(20,70,45,114,95)(21,71,46,120,96)(22,72,47,116,97)(23,73,48,117,98)(24,74,49,118,99)(25,75,50,119,100)(26,76,51,125,101)(27,77,52,121,102)(28,78,53,122,103)(29,79,54,123,104)(30,80,55,124,105), (1,124,49,34,44)(2,125,50,35,45)(3,121,46,31,41)(4,122,47,32,42)(5,123,48,33,43)(6,16,11,77,21)(7,17,12,78,22)(8,18,13,79,23)(9,19,14,80,24)(10,20,15,76,25)(26,100,85,95,90)(27,96,81,91,86)(28,97,82,92,87)(29,98,83,93,88)(30,99,84,94,89)(36,112,107,104,117)(37,113,108,105,118)(38,114,109,101,119)(39,115,110,102,120)(40,111,106,103,116)(51,75,60,70,65)(52,71,56,66,61)(53,72,57,67,62)(54,73,58,68,63)(55,74,59,69,64), (2,5)(3,4)(6,97)(7,96)(8,100)(9,99)(10,98)(11,87)(12,86)(13,90)(14,89)(15,88)(16,28)(17,27)(18,26)(19,30)(20,29)(21,82)(22,81)(23,85)(24,84)(25,83)(31,47)(32,46)(33,50)(34,49)(35,48)(36,75)(37,74)(38,73)(39,72)(40,71)(41,122)(42,121)(43,125)(44,124)(45,123)(51,112)(52,111)(53,115)(54,114)(55,113)(56,116)(57,120)(58,119)(59,118)(60,117)(61,106)(62,110)(63,109)(64,108)(65,107)(66,103)(67,102)(68,101)(69,105)(70,104)(76,93)(77,92)(78,91)(79,95)(80,94) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125)], [(1,108,89,14,64),(2,109,90,15,65),(3,110,86,11,61),(4,106,87,12,62),(5,107,88,13,63),(6,56,31,39,81),(7,57,32,40,82),(8,58,33,36,83),(9,59,34,37,84),(10,60,35,38,85),(16,66,41,115,91),(17,67,42,111,92),(18,68,43,112,93),(19,69,44,113,94),(20,70,45,114,95),(21,71,46,120,96),(22,72,47,116,97),(23,73,48,117,98),(24,74,49,118,99),(25,75,50,119,100),(26,76,51,125,101),(27,77,52,121,102),(28,78,53,122,103),(29,79,54,123,104),(30,80,55,124,105)], [(1,124,49,34,44),(2,125,50,35,45),(3,121,46,31,41),(4,122,47,32,42),(5,123,48,33,43),(6,16,11,77,21),(7,17,12,78,22),(8,18,13,79,23),(9,19,14,80,24),(10,20,15,76,25),(26,100,85,95,90),(27,96,81,91,86),(28,97,82,92,87),(29,98,83,93,88),(30,99,84,94,89),(36,112,107,104,117),(37,113,108,105,118),(38,114,109,101,119),(39,115,110,102,120),(40,111,106,103,116),(51,75,60,70,65),(52,71,56,66,61),(53,72,57,67,62),(54,73,58,68,63),(55,74,59,69,64)], [(2,5),(3,4),(6,97),(7,96),(8,100),(9,99),(10,98),(11,87),(12,86),(13,90),(14,89),(15,88),(16,28),(17,27),(18,26),(19,30),(20,29),(21,82),(22,81),(23,85),(24,84),(25,83),(31,47),(32,46),(33,50),(34,49),(35,48),(36,75),(37,74),(38,73),(39,72),(40,71),(41,122),(42,121),(43,125),(44,124),(45,123),(51,112),(52,111),(53,115),(54,114),(55,113),(56,116),(57,120),(58,119),(59,118),(60,117),(61,106),(62,110),(63,109),(64,108),(65,107),(66,103),(67,102),(68,101),(69,105),(70,104),(76,93),(77,92),(78,91),(79,95),(80,94)]])

C53⋊C2 is a maximal subgroup of   C538C4  C539C4  D5×C5⋊D5
C53⋊C2 is a maximal quotient of   C5312C4

64 conjugacy classes

class 1  2 5A···5BJ
order125···5
size11252···2

64 irreducible representations

dim112
type+++
imageC1C2D5
kernelC53⋊C2C53C52
# reps1162

Matrix representation of C53⋊C2 in GL6(𝔽11)

100000
010000
0010100
006400
000088
0000310
,
010000
1070000
000800
004700
000001
0000103
,
100000
010000
0010100
006400
000001
0000103
,
100000
7100000
007100
007400
000033
000018

G:=sub<GL(6,GF(11))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,6,0,0,0,0,1,4,0,0,0,0,0,0,8,3,0,0,0,0,8,10],[0,10,0,0,0,0,1,7,0,0,0,0,0,0,0,4,0,0,0,0,8,7,0,0,0,0,0,0,0,10,0,0,0,0,1,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,6,0,0,0,0,1,4,0,0,0,0,0,0,0,10,0,0,0,0,1,3],[1,7,0,0,0,0,0,10,0,0,0,0,0,0,7,7,0,0,0,0,1,4,0,0,0,0,0,0,3,1,0,0,0,0,3,8] >;

C53⋊C2 in GAP, Magma, Sage, TeX

C_5^3\rtimes C_2
% in TeX

G:=Group("C5^3:C2");
// GroupNames label

G:=SmallGroup(250,14);
// by ID

G=gap.SmallGroup(250,14);
# by ID

G:=PCGroup([4,-2,-5,-5,-5,65,482,3203]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^5=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽